Please follow all instructions on today's check answer sheet:

6.4 CHECK ANSWERS

#4-7→ Use degrees instead of radians: $0^\circ \le \theta < 360^\circ$ NO calculator, sketch triangle in proper quadrant then label angle and sides to justify your solution.		
#17-22→ Calculator OK		
#29-34 \rightarrow NO calculator, sketch triangles in Quad I		
#39-42→ Calculator OK, sketch diagrams		
$\frac{3}{5} \frac{3}{5} \frac{\sqrt{5}}{2} \frac{12}{5} \frac{12}{13} \frac{13}{5} \frac{25}{24}$		
0 0 60 90 90 180 135 315 315		
19.08 21.25 25.38 27.27 34.70		
34.85 36.87 38.66 68.20 72.54		
$\theta = \tan^{-1} \frac{50}{5}$ $\theta = \tan^{-1} \frac{h}{2}$ $h = 2\tan\theta$		

NOTES: 6.4 Solving for angles using inverses $\tan^{-1}(\sqrt{3})$ indicates you are performing an inverse operation (NOT a reciprocal.) Therefore, it can be rewritten as $\tan \theta = (\sqrt{3})$

*Similar idea: $\sqrt{9}$ indicates an operation. although it can be rewritten as $x^2 = 9$

NOTES: 6.4 Solving for angles using inverses

Principal values create a unique (one) solution: $\sin\theta$ and $\tan\theta \rightarrow \text{Quadrant I (+)}$ Quadrant IV (-) $\cos\theta \rightarrow \text{Quadrant I (+)}$ Quadrant I (-)

 $\sin\theta$ and $\tan\theta \rightarrow$ Quadrant I (+) Quadrant IV (-)

$$\cos\theta \rightarrow \text{Quadrant I (+)}$$

Quadrant II (-)

$\sin\theta=\frac{y}{r}$	$\csc\theta = \frac{r}{y}$
$\cos\theta = \frac{x}{r}$	$\sec\theta = \frac{r}{x}$
$\tan\theta=\frac{y}{x}$	$\cot \theta = \frac{x}{y}$

Principal values create a unique (one) solution: $\sin\theta$ and $\tan\theta \rightarrow \text{Quadrant I (+)}$

Quadrant IV (-) $\cos\theta \rightarrow \text{Quadrant I (+)}$ Quadrant II (-)